超快非线性光学技术之五十三 多通腔压缩200mJ、1kW脉冲

高脉冲能量的少光学周期脉冲(<50 fs)在太赫兹产生、激光等离子体加速和激光等离子体X射线源等领域有着重要的作用。近年来,掺镱薄片放大器已被证明脉冲能量可达0.5 J以上,平均功率可超过2 kW。但受限于增益带宽,此类激光系统无法通过光栅对等通常压缩器件直接压缩到50 fs以下

高脉冲能量的少光学周期脉冲(<50 fs)在太赫兹产生、激光等离子体加速和激光等离子体X射线源等领域有着重要的作用。近年来,掺镱薄片放大器已被证明脉冲能量可达0.5 J以上,平均功率可超过2 kW。但受限于增益带宽,此类激光系统无法通过光栅对等通常压缩器件直接压缩到50 fs以下。针对该难题,可以采用基于多通腔(MPC)的非线性脉冲压缩方法展宽激光的光谱,然后经过啁啾镜补偿相位从而产生更短的脉冲。本次分享的文章使用掺镱薄片再生放大器产生200 mJ脉冲,并将其通入充氦气的MPC中展宽光谱,最终通过啁啾镜压缩得到<45 fs脉冲[1]。

图1 实验装置图[1]

实验装置如图1所示,前端为TRUMPF公司的掺镱薄片再生放大器(Dira1000-5),将输出5 kHz、156 mJ的脉冲作为信号光源。用于模式匹配的望远镜系统、聚焦镜和再准直镜,以及MPC镜片阵列放置在长12 m、宽0.7 m的充满800 mbar氩气的腔室内。MPC采用Herriot型实现多通传输,24通后的总B积分为50.4 rad,MPC传输效率超过96%,输出腔室外的脉冲能量仍有150 mJ。由于实验无法满足全能量压缩所需要的真空室条件,该课题组使用楔形镜分出2 mJ的光并输入啁啾镜压缩系统中,最终得到38.8 fs的输出脉冲。图2展示了采用二次谐波FROG(SH-FROG)方法测量得到的压缩后脉冲。

图2  156 mJ脉冲非线性压缩后的时间特性[1]

为了测量保持光束质量(以因子为评价标准)所需的空间-光谱均匀性,该课题组利用安装在精密针孔后的芯径为200 μm的多模光纤,以0.2 mm的步长在横向光束剖面的两个正交轴上测量了光谱。如图3所示,在的光束直径范围内,两个正交轴的均匀性>92%,同时测量得到X轴和Y轴的值分别为1.46和1.37,这说明MPC基本不会影响光束质量。

图3  156 mJ脉冲非线性压缩后的空间光谱特性[1]

随后,该课题组根据计算调整了MPC的设置,并使用Dira1000-5输出200 mJ信号光进入装置内,以测试极端条件下多通腔的性能。输入200 mJ时,能够明显地观察到由于腔内气体电离导致的光散射现象,且伴随着轻度的退化。此外,从图4(d)中绿色点线发现,电离导致光谱产生未补偿的三阶相位,从而影响了脉冲的压缩效果。由于电离随着时间的增加变得越来越强烈,课题组推测源于MPC真空室的气密性不足,导致环境空气泄漏进了腔内,从而引发了电离现象。尽管如此,如图4(c)所示,脉冲仍能压缩到45 fs以下。

图4  200 mJ脉冲非线性压缩后的时间特性[1]

本论文提出了一种由超快薄片放大器和Herriott型MPC组成的高脉冲能量激光源,重复频率为5 kHz,脉冲能量为200 mJ,脉冲可压缩至45 fs以下。在进一步解决全能量压缩问题后,该装置有望在激光等离子体加速等领域发挥重要作用。

参考文献:

[1] Pfaff, Y., Barbiero, G., Rampp, M., Klingebiel, S., Brons, J., Teisset, C. Y., ... & Metzger, T. (2023). Nonlinear pulse compression of a 200 mJ and 1 kW ultrafast thin-disk amplifier. Optics express, 31(14), 22740-22756.

原文标题 : 超快非线性光学技术之五十三  多通腔压缩200mJ、1kW脉冲

(来源:维科网)
免责声明:本文内容来源于第三方或整理自互联网,本站仅提供展示,不拥有所有权,不代表本站观点立场,也不构成任何其他建议,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容,不承担相关法律责任。如发现本站文章、图片等内容有涉及版权/违法违规或其他不适合的内容, 请及时联系我们进行处理。

相关推荐

  • 超快非线性光学技术之五十三 多通腔压缩200mJ、1kW脉冲

    高脉冲能量的少光学周期脉冲(<50 fs)在太赫兹产生、激光等离子体加速和激光等离子体X射线源等领域有着重要的作用。近年来,掺镱薄片放大器已被证明脉冲能量可达0.5 J以上,平均功率可超过2 kW

    2024-05-11
    0
  • 超快非线性光学技术之五十二 载波包络相位稳定的瓦级红外光源

    多级光参量放大是获得波长在2 µm附近的高能量脉冲的常用方法。然而,这类装置在没有主动稳定和同步系统的情况下,很难产生波形稳定的飞秒脉冲。本文采用光谱拓展和脉冲内差

    2024-04-23
    0
  • 超快非线性光学技术之五十 基于空芯光纤的双路光场合成

    为了产生波长在X射线波段的高通量孤立阿秒脉冲,需要发展短波红外少周期飞秒驱动光源。这种光源通常采用光参量放大(OPA)和光参量啁啾脉冲放大(OPCPA)来实现,但这两种技术装置复杂、搭建难度大,基于啁啾脉冲放大(CPA)和非线性压缩技术有望克服以上缺点

    2024-01-22
    0
  • 超快非线性光学技术之四十九 基于OPCPA的5 ?m与12 ?m高能量飞秒光源

    中红外激光通常是指波长在3-25 µm范围的激光, 很多分子在该波段具有强烈而独特的吸收,因此中红外波段在分子光谱学界被称为“指纹”区域。除了为分子光谱分析提供有力工具外,中红外激光也常应用在定向红外对抗系统、自由空间光通信等领域

    2023-12-25
    0
  • 超快非线性光学技术之四十七 基于空芯光纤反馈的光参量振荡器

    同步泵浦光参量振荡器(SPOPO)能够将近红外脉冲转换到中红外波段,以满足光谱分析、医学治疗等领域对中红外超短脉冲的需求。因为SPOPO需要实现泵浦光和谐振的信号光之间的时间同步,所以当泵浦光为高能量的低重复频率脉冲时,谐振腔的长度要足够长

    2023-11-12
    0
  • 超快非线性光学技术之四十七基于空芯光纤反馈的光参量振荡器

    同步泵浦光参量振荡器(SPOPO)能够将近红外脉冲转换到中红外波段,以满足光谱分析、医学治疗等领域对中红外超短脉冲的需求。因为SPOPO需要实现泵浦光和谐振的信号光之间的时间同步,所以当泵浦光为高能量的低重复频率脉冲时,谐振腔的长度要足够长

    2023-11-07
    0
  • 超快非线性光学技术之四十六 基于BGGSe晶体产生中红外少周期脉冲

    2-20 μm中红外波段位于许多分子的特殊共振能级,被广泛应用于生物和化学检测领域。其中,宽带少周期中红外脉冲凭借其宽光谱范围和短脉冲宽度在时间分辨光谱学、飞秒泵浦探测光谱学以及高动态范围精密测量等领域发挥着独特的作用

    2023-09-24
    0
  • 超快非线性光学技术之四十六 基于BGGSe晶体产生中红外少周期脉冲

    2-20 &mu;m中红外波段位于许多分子的特殊共振能级,被广泛应用于生物和化学检测领域。其中,宽带少周期中红外脉冲凭借其宽光谱范围和短脉冲宽度在时间分辨光谱学、飞秒泵浦探测光谱学以及高动态范围精密测量等领域发挥着独特的作用

    2023-09-18
    0
  • 超快非线性光学技术之四十五 基于色散增强的多通腔脉冲压缩

    高功率、高重复掺镱超快激光在科研和工业中有着极大的应用价值。但该激光系统光谱带宽较窄(10 nm),因此众多基于自相位调制展宽光谱的后置压缩技术应运而生。多通腔技术压缩效率可以超过> 90%,产生具有均匀空间分布的高能量、高平均功率超短脉冲

    2023-09-11
    0
  • 超快非线性光学技术之四十四 中红外交叉光梳光谱技术

    虽然中红外双光梳光谱技术(dual-comb spectroscopy,DCS)在物理、化学、生物等科学技术领域颇有前景,但是在中红外波段产生两列符合要求的频率梳并不容易。并且,与成熟的近红外探测器相比,中红外探测器性能较差

    2023-08-29
    0