摘要
以汽车工业、通讯、电子、绿色能源、环境和工业材料技术而闻名的住友电工正在致力于提高电动机效率。电动机的热管理是克服性能限制和降低功耗的关键。随着电动机效率的显著提高以及它们在电动驱动系统中的应用,我们希望为推动电动出行和最终实现全球脱碳和达到与气候相关的目标做出贡献。
1. 随着时间的推移,社会的变革(脱碳电气化)
全球变暖和气候变化迫使社会大幅减少温室气体排放。尽管消费者的各种对策已经在影响他们的日常生活,政府也在积极寻求新的解决方案。为应对空气污染、资源枯竭和减少二氧化碳排放等环境问题,各种法规已经颁布,如《巴黎协定》、零排放车辆、CAFE和LCA等,作为减轻环境负担和防止全球变暖的手段。交通运输是二氧化碳排放的主要原因之一。因此,许多对策和法规直接应用在这里。混合动力车辆(HEV)、插电式混合动力车辆(PHEV)和电动车辆(BEV)等电动车辆的市场正在迅速扩大,并且预计未来会更加强劲(见图1-1)。在这种背景下,BEV被要求具有与汽油车相同的行驶性能(高转速和高扭矩),因此公司正在研究BEV的可行性。
图1-1 BEV销售预测(预估)
2. 牵引电机的趋势
为了满足对提高动态性能、降低燃料消耗和降低成本的需求,主驱电机正在促进电机高扭矩和高效率等技术的发展。传统的主驱电机的线圈使用分布式绕组(使用圆形截面的圆线)或使用矩形截面的方形线的集中绕组。最近,出现了使用方线的分布式绕组,或所谓的“发夹技术”的演变。使用方形线圈还极大地提高了槽填充因子,通过减少使用的铜线量(图2-3)减小了尺寸、重量和损耗(铜损)。我们打算通过我们的新技术进一步提高这种特定槽填充比率。
图2-1.绕组概念的变化
图2-2 .填充因子改进的历史记录
图2-3导线类型的性能发展历史
3. 绕组的问题
3.1 绝缘和热量产生
为了满足对更高加速度的需求,未来更高电压(如800V)的趋势可能会持续。在这种情况下,改善绕组的绝缘性能至关重要。一般来说,为了确保耐受更高电压,会使用更厚的绝缘膜,导致线圈的横截面积增大。除此之外,高输出电机需要高电流,铜线的横截面积需要增加以抑制热量的产生。在这两种情况下,电机都必须增大尺寸。相反,当考虑到安装能力时,需要小型化,因为尺寸和散热/绝缘性能之间存在一种平衡(见图3-1)。
图3-1.导体尺寸和涂层厚度的关系
3.2 绝缘性能
逆变器浪涌开关产生的陡涌电压随着逆变器与电机之间的线路长度的增加而增大。峰值可达到逆变器电压的两倍。当在绕组之间施加高电压并超过局部放电起始电压(PDIV)时,绕组涂层表面会发生微小放电(局部放电)。随着局部放电的继续发生,涂层会侵蚀和恶化,最终导致介电击穿。因此,为了提高耐压寿命,需要具有在高频率和高电压下甚至能抑制局部放电发生的绕组。考虑到这个问题的重要性,许多公司正在努力理解PDIV。PDIV是绝缘性能的一个指标,其特性据说与达金公式(局部放电起始电压)非常吻合。
公式:式1 V=163×√2×(2×厚度/介电常数)0.46
V:局部放电启动电压(Vp)
εr:绝缘膜的介电常数
t:绝缘膜厚度(µm)
公式清晰地表明,随着PDIV的增加,膜厚以二次方的形式增加,因此在高电压系统(例如800V)中,膜厚增加,绕组在槽中的占用率减少(见图3-2-1),(见图3-2-2)。
图片3-2-1.与填充因子相比的局部放电值
图3-2-2绕组之间的电场
3.3 冷却性能
通常有两种冷却系统:油冷和水冷系统。油冷系统通常使用变速器油。由于大多数电动汽车没有变速器,许多车型使用基于水冷的系统。当使用水冷时,特征上存在的定子铁芯、槽纸/清漆以及水和铜线之间的瓷漆。由于槽纸、清漆和瓷漆的热阻较高,尤其是槽纸、清漆和瓷漆,冷却性能受到影响。因此,公司正在研究如何改善这些电机的散热性能。如果增加瓷漆的厚度以确保绝缘性能,则冷却性能甚至进一步降低。换句话说,绝缘性能和冷却性能之间存在着权衡(见图3-3-1)。
图3-3-1与PDIV相比的传热系数
4 解决PDIV问题的不同方法
4.1 低介电常数绕组的开发
众所周知,降低介电常数是提高PDIV相对于膜厚的有效方法,并且PDIV与达金公式吻合良好。另一种经常应用的技术是显著降低绝缘膜的介电常数,将介电常数为1.0的空气引入绝缘膜中。通过研究将空气泡引入绕组的PI涂层,我们成功地开发出了一种将空气泡均匀地引入并控制大小的过程。这使得能够显著减小瓷漆薄膜的厚度,并防止占用率降低。
4.2 高散热结构设计
我们尝试减小热阻,以改善散热性能,而不是增加线圈的横截面积以应对更高的电流。对当前电机/槽结构的分析显示,清漆和槽纸的热阻是主导因素。通过将它们排除,并用树脂填充,如图4-1所示,显著提高了传热系数,并改善了冷却性能。因此,成功开发出了用于大电流的更小更紧凑的电机尺寸。
图4-1.SEI概念草图(剖面图)
4.3 改善权衡关系
通过应用上述解决方案,散热和冷却性能之间的权衡线改善程度如图4-3-1所示。可以看到,对于相同的PDIV,传热系数约高出三倍。
图4-3-1.该概念设计改善了传热系数
5. 模拟和实际测试效果的结果
在使用常用的技术时,很难达到100%的清漆浸渍。通常,会有带有清漆的区域和有气隙的区域。100%清漆浸渍和所有气隙的模拟结果如图(图5-1)以及SEI概念定子。200 A电流流(每根导线50A)表明,传统方法的最大⊿T为28~32°C,而概念定子的⊿T=为24°C。T=24°C在概念定子。
图5-1传统设计与我们的概念设计之间的温度比较
另一方面,实际的电机验证结果常规定子为ΔT=29°C,概念设计电机为22°C,验证了仿真结果的准确性(图5-2)。
图5-2不同设置之间的温度比较(模拟)
5.1 首次独立测试
为了确认插槽架构概念之间的仿真比较结果,我们开始在外部实验室进行了测试。
图5-3温度对比试验(来源:FEV)
在独立实验室对第一个样品(概念电动机“0”)进行的测试清楚地显示了温度降低的效果(图5-4)。在这里,参考电机与我们的设计概念之间的温度ΔT为-2.6°C。
图5-4温度测量比较(来源:FEV)
6. 功率性能改进效果的估算
在下一步中,我们调查了功率性能改进的效果。在这项研究中,使用了图片6-1中描述的模型。关于当输入电流产生最大扭矩时的温升,该电流用于上述热模拟时发现,最大可容忍的生成热量增加到160%,当其转换为导体横截面积时,可减少21%。当施加产生最大扭矩的电流时,图片6-2中显示的等高线图表明了磁饱和区域。通过增加齿的宽度可以改善扭矩特性。这就是为什么我们尝试通过使用上述提及的导体面积减小来增加齿的宽度来改善功率性能。我们能够确认,槽(绕组部分)中的磁通线减少,因此齿的宽度增加,如图片6-3和图片6-4所示。这些结果表明,增加齿的宽度对增加最大扭矩是有效的。如图片6-5所示,我们绕线中的扁平导线的角度R比传统绕线的窄,而槽中的绕线占用率提高了2.2%,从而使总最大扭矩增加了10.9%成为可能。
最大扭矩时的温度分布
磁通线分布比较
图6-5.导体形状横截面比较
7. 电机尺寸减小效果的估算
应用我们迄今为止的结果,研究了在最大扭矩未增加时电机尺寸减小的效果。考虑到在相同条件下扭矩与电机长度成正比,当使用相同的扭矩时,电机长度可以减小12.5毫米。这在图片7-1中有所展示。
图7-1.性能和尺寸比较
8. 减少环境有害物质的效果
在进一步的调查结果的基础上,审查了减少对环境有害的物质的影响。上述提到的尺寸减小效果使得总原材料用量减少(图片8-1),以及减少了电机中使用的污染物的量。根据我们的调查结果,这种减少对CO2排放量的影响如表所示(图片8-2)。此外,通过消除清漆干燥过程,这种槽型电机在完整的生产过程中可以进一步减少35.76公斤的CO2排放,这相当于减少了30%的CO2总体排放量,如图片8-2所示。
图片8-1.材料投资比较表
图8-2.二氧化碳排放对比表
9. 结论
我们新开发的槽型设计技术,成功地使电机尺寸减小,并减少了对环境有害物质的使用。与其他传统电机设计相比,由于消除了槽纸,在改善驾驶性能的同时可以提高成本效益。根据我们的结果,我们相信:采用我们新改进的槽型设计理念,将为汽车制造商以及整个汽车行业创造重大价值,推动纯电动汽车技术的普及以加速碳中和的进程。
来源
1. 图片1-1:IHS数据
※ 2030年的数据是参照前一年增长率计算的。
2. 图片5-3,图片5-4:FEV集团
作者
Dr. Kazuhiro Ikeda [= Author and Speaker];
Sumitomo Electric (SEI Automotive Europe Ltd.), Wiesbaden,Germany
Masaki Tsuda [= Author];, Shintaro Morino, [= Co-author]; Kanzo
Ishihara [= Co-author]; Yusuke Mitsugi [= Co-author]
Sumitomo Electric Industries, Yokkaichi, Japan Volker Uwe Strueken; [= Co-author]
SEWS-CE, Wolfsburg,Germany
References
1. K. Oshiro, S. Fujimori, T. Hasegawa, O. Akashi, “Implications of near-term mitigation actions for mid-century energy investments in Asia,” Proceedings of JSCE-G(environment), Vol.76, No.5, I_243-I_252, 2020
2. F. Sano, K. Akimoto, T. Homma, K. Tokushige, “Evaluations on the Japan’s Greenhouse Gas Emission Reduction Target for 2030,” Journal of Japan Soci ety of Energy and Resources, Vol.37, No.1, 51-60, 2015
3. Rahman K , Patel N, Ward T, Nagashima J, Caricchi F, Crescimbini F ,“Application of Direct Drive Wheel Motor for Fuel Cell Electric and Hybrid Electric Vehicle Propulsion System,” Conference Record of the IEEE Industry Applications Conference, 39th, Vol.3, pp.1420-1426, 2004
4. E. Kimura, M. Niki, “2 Motor Hybrid Technology – e:HEV Evolution and Expansion,” Journal of Society of Automotive Engineers of Japan, Vol.75, pp 36-43, 2021-6
5. K. Uemura, H. Yoshida, “Development of High Performance e-Axle,” Journal of Society of Automotive Engineers of Japan, Vol.75, pp 54-59, 2021-12
6. J. Todate, “Various Problems and Solutions for the Spread of Environmental Vehicles and Future Prospects.” Journal of Society of Automotive Engineers of Japan, Vol.76, pp 20-27, 2022-1
7. K. Akatsu, “Future Development in Tration Motor and Inverter for EV/HV,” Journal of Society of Automotive Engineers of Japan, Vol.76, pp 46-53, 2022-6
8. Y. Tsuchiya, T. Okouchi, A. Takehara, H. Aihara, “Development of New Motor for High Powered HEV and PHEV.” Journal of Society of Automotive Engineers of Japan, Vol.76, pp 54-59, 2022-6
9. R. Kaneko, T. Nishikawa, K. Azusawa, “Low Relative Permittivity of Magnet Wire Insulation Coating for HEV Motor,” Honda R&D Technical Review, Vol.32,No.2, pp 125-131, 2020-10
10. A. Sato, S. Iiduka, K. Kimura, “Magnet Wires for Driving Motors in Electric Vehicles,” SEI Technical Review, No.90, pp.17-21, 2020
11. A. Hatanaka, T. Tokuyama, J. Kusukawa, T. Seki, K. Ohshima, “High Volt age and High Power Density Technologies for Inverter in Vehicle,” Transactions of the Society of Automotive Engineers of Japan, Inc., Vol.51, No.6, pp 1050-1055, 2020
12. “Influence to Insulation in case of Operating Common Motor by 400V Class Invertor.” Electrical Construction Engineering, pp.1-3, 1995
13. K. Tomizawa, M. Shimada, K. Ikeda, D. Mutou, K. Ohshima, “High Voltage and High Power Density Technologies for Inverter in Vehicle,” Transactions of the Society of Automotive Engineers of Japan, Inc., Vol.51, No.6, pp 1050-1055, 2020
14. M. Mima, T. Narita, H. Miyake, Y. Tanaka, M. Kozako, M. Hikita, “Influence of Space Charge Accumulation by Pre-stress on Partial Discharge Inception Voltage,” IEEJ Transactions on Fundamentals and Materials, Vol.140, No.5, pp 276-284, 2020
免责声明:以上观点仅代表作者个人看法,与本平台无关。文档中文版权归电动新视界平台所有,英文文档版权归住友电气公司所有,分享本文仅供学习参考,切勿用于商业用途,如涉及版权问题,请第一时间告知我们删除,非常感谢。
原文标题 : 住友电气:能显著降低电机温度的高导热性核心槽架构
(来源:维科网)